REDUCTIVE CONVERSION OF NITRO ALKENES TO KETONES AND/OR OXIMES ${\tt IN~AN~AQUEOUS~HClo_4-Ch_2Cl_2-DIOXANE-(Pb)~SYSTEM}$

Sigeru TORII,* Hideo TANAKA, and Tetsuo KATOH

Department of Industrial Chemistry, School of Engineering,

Okayama University, Tsushima, Okayama 700

Electrochemical and chemical reduction of nitro alkenes in an aqueous ${\rm HClO}_4$ - ${\rm CH}_2{\rm Cl}_2$ -dioxane-(Pb) system afforded ketones and oximes in good yields, each of which can be obtained selectively by treating with either aqueous formaldehyde or hydroxylamine as a proper workup process, respectively.

Nitro alkenes $\underline{1}$, readily prepared by the condensation of aldehydes with nitro alkanes, $\underline{1}$) are synthetically equivalent to the corresponding ketones $\underline{2}$ and oximes $\underline{3}$. Namely, nitro alkenes $\underline{1}$ can be converted to $\underline{2}$ and/or $\underline{3}$ by the reduction with Fe-dilute HCl, $\underline{^{2a}}$ Zn-AcOH, $\underline{^{2b}}$ TiCl₃-NH₄OAc-aqueous methanol, $\underline{^{2c}}$ and others. $\underline{^{3}}$ Electrolytic reduction of $\underline{1}$ to $\underline{2}$ and/or $\underline{3}$ has been also investigated by several groups. $\underline{^{4}}$ However, the product selectivity and the yield for the desired products $\underline{2}$ and $\underline{3}$ are not satisfactory in a practical sense. $\underline{^{5}}$ In this communication, we describe some of potential procedures for the reductive conversion of $\underline{1}$ to $\underline{2}$ or $\underline{3}$ assisted with lead in an aqueous HClO₄-CH₂Cl₂-dioxane system, which involve electrochemical and chemical methods followed by a proper workup process.

$$\begin{array}{c} H & H \\ R^1 & C \\ \hline \\ O & \\ \end{array} \begin{array}{c} R^2 & \\ \hline \\ 2) \, \text{aqueous} \\ \text{formaldehyde} \end{array} \begin{array}{c} H \\ \hline \\ R^2 \\ \hline \\ NO_2 \end{array} \begin{array}{c} 1) & +4e \\ \hline \\ 2) \, \text{NH}_2 \, \text{OH} \cdot \text{HC1-} \\ \hline \\ AcONa \\ \hline \\ \end{array} \begin{array}{c} R^1 \\ \hline \\ N \\ O \\ \hline \end{array} \begin{array}{c} R^2 \\ \hline \\ N \\ O \\ \hline \end{array}$$

The electrochemical reduction was carried out in an undivided cell fitted with two lead electrodes $(1.5 \times 2 \text{ cm}^2)$. A typical electrolysis procedure is as follows: To a solution of nitro alkene <u>la</u> $(R^1 = p\text{-chloropheny1}; R^2 = CH_3, 0.53 \text{ mmol})$ in dichloromethane (2 ml) and dioxane (0.5 ml) was added aqueous 20% perchloric acid (10 ml) and the two-phase solution was electrolyzed under vigorous stirring at 10 mA/cm², changing the current direction every 30 s by a commutator, at room temperature. After passage of 3 F/mol of electricity, aqueous 37% formaldehyde (1 ml) was added and the stirring was continued for additional 20 min without passing current. The usual workup of the organic phase afforded the ketone 2a $(R^1 = p\text{-chloropheny1}; R^2 = CH_3)$ in 93% yield (Procedure A: entry 1 in the Table).

On the other hand, after the electrolysis (3.5 F/mol of electricity passed), the organic phase was separated from the aqueous phase and treated with NH₂OH·HCl (300 mg) and sodium acetate (370 mg) at room temperature for 2 h, affording the corresponding oxime 3a ($R^1 = p$ -chlorophenyl; $R^2 = CH_3$) in 90% yield (Procedure B: entry 2 in the Table). Apparently, the initial product of the reduction was a mixture of 2 and 3 and the suitable workup of the products allowed to isolate either 2 or 3 respectively. 6)

Actually, the transformation of $\underline{1}$ into $\underline{2}$ or $\underline{3}$, which is a four-electron reduction process, 7) consumed 2-3.5 F/mol of electricity and after the electrolysis (ently 1 in the Table) lead(II) salts were obtained from the aqueous layer. 8) This suggests that the reduction of $\underline{1}$ to $\underline{2}$ or $\underline{3}$ (Procedure A and B) involves both electrochemical reduction and chemical reduction with electrochemically activated lead(0). In fact, the reduction of 1 with lead in the same media occurred smoothly without passing current. 9) Thus, prior to the reduction the current (10 $\mathrm{mA/cm}^2$) was passed between two lead electrodes in aqueous 20% perchloric acid for 10 min in order to activate the metal surface. solution a dichloromethane solution of <u>la</u> was added and the mixture was stirred for 30 min at room temperature. Workup in accordance with that of Procedure A afforded 2a in 90% yield (Procedure C: entry 3 in the Table). The treatment of $\overline{ ext{la}}$ in the same media with lead $^{10)}$ without activating its surface resulted in the recovery of most of la along with a small amount of 2a (~10%) after stirring for 1 h.

Electrochemical reduction of $\underline{1}$ proceeded mainly when the electrolysis was

Table Reduction of Nitro Alkenes in an Aqueous $\mathrm{HClO_4-CH_2Cl_2-dioxane-}$ (Pb) System

entry	nitro alkene			procedure ^{a)}	electricity	product,	yeild % ^{b)}
	R^{1}	R ²			F/mol	ketone 2	oxime 3
	····						
1	c1-{\bigs_}	СH ₃ -	<u>la</u>	A	3	93	
2			<u>la</u>	В	3.5		91
3			<u>la</u>	С		91	
4			<u>la</u>	D	4.3	83	
5	$\langle \overline{\rangle}$	сн ₃ -	<u>lb</u>	A	3	80	
6			<u>lb</u>	В	3		75
7			<u>1b</u>	С		76	
8			<u>lb</u>	D	4	73	
9	сн³о-⟨	СH ₃ -	<u>1c</u>	A	3	87	
10			<u>lc</u>	В	3		88
11			<u>lc</u>	С		80	
12			<u>lc</u>	D	4.4	74	
13	CH=CH-	СH ₃ -	<u>ld</u>	A	2	70	
14			<u>1d</u>	В	3		55
15			<u>ld</u>	С		71	
16			<u>ld</u>	D	4.1	63	
17	C6H13-	сн ₃ -	<u>le</u>	A	2.7	81	
18			<u>le</u>	В	3		67
19			<u>le</u>	С		88	
20			<u>le</u>	D	4	80	
21	с ₆ н ₁₃ - сн ₃ со	(CH ₂) ₂ -	<u>lf</u>	Α	3	95	
22			<u>lf</u>	D	4	75	

a) Procedure A: worked up with aqueous 37% formaldehyde; B: worked up with NH₂OH·HCl-NaOAc; C: reduction with lead activated by electrolysis prior to use;
D: using lead cathode and platinum anode.
b) Isolated yields after column chlomatography on SiO₂ (hexane-AcOEt: 10/1~5/1).

carried out by using lead cathode and platinum anode without changing the current direction (Procedure D in the Table). In this case, 4-4.5 F/mol of electricity was required to complete the reduction and no detectable amount of lead(II) salts were recovered from the aqueous layer.

The results of the reduction of nitro alkenes <u>1</u> in Procedure A-D are summarized in the Table. The combination of aqueous perchloric acid and lead cathode is essential to each procedure, since the use of other materials as electrodes (cathode-anode: Pt-Pt, Cu-Pt, Cu-Cu, C-C, and stainless (SUS 27)-stainless) brought about no appreciable amount of reduction products <u>2</u> and <u>3</u> and the use of aqueous 10% sulfuric acid or aqueous 10% chloric acid resulted in the complete recovery of the starting materials.

The present work was partially supported by a Grant-in-Aid (57118002) for the Special Project Research (Innovative Studies on Highly Selective Synthesis) from the Ministry of Education, Science, and Culture.

References

- 1) F. A. Ramirez and A. Burger, J. Am. Chem. Soc., 72, 2781 (1950).
- 2) a) H. B. Hass, A. G. Susie, and R. L. Heider, J. Org. Chem., 15, 8 (1950);
 - b) D. Nightingale and J. R. James, J. Am. Chem. Soc., 66, 325 (1944);
 - c) J. E. McMurry and J. Melton, J. Org. Chem., 38, 4367 (1973), and references cited therein.
- 3) Ordinary, metal-acids reduction of $\underline{1}$ has been carried out at high temperature (\sim 100 °C) and the yields of 2 and/or 3 are insufficient (50-70% yields).
- 4) a) J. Armand and O. Convert, C. R. Hedb. Seances Acad. Sci., Ser. C, 286, 842 (1969); b) C. Bellec, R. Colan, S. Deswarte, J. Dore, and C. Viel, ibid., 281, 885 (1975); c) I. A. Avnitskaya, K. K. Babievskii, V. M. Belikov, E. V. Zaporozhets, V. T. Novikov, M. Foishin, and M. Ya, Electrokhimiya, 11, 661 (1975); d) T. Shono, H. Hamaguchi, H. Mikami, and H. Nogusa, 45th National Meeting of the Chemical Society of Japan, Tokyo, April 4, 1982, Abstr. Vol. 2, p. 1038.
- 5) The reported electrolytic reduction of nitro alkenes has been carried out in a divided cell under a strict control of the electrode potential and/or pH of the electrolysis medium.
- 6) Usual workup of the electrolyte afforded a mixture of $\underline{2a}$ and $\underline{3a}$ (59/33) in 92% yield.
- 7) J. Wiemann and O. Convert, C. R. Hebd. Seances Acd. Sci., Ser. C, <u>258</u>, 4285 (1964).
- 8) Lead(II) salts disolved in the aqueous layer was recovered as precipitates of lead(II) sulfate (226 mg).
- 9) Reduction of nitro alkenes with lead has not yet been reported.
- 10) Purchased from Kishida Chemical Co. Ltd., Osaka.

(Received February 3, 1983)